Midterm 1 - Review - Answers

Peyam Ryan Tabrizian

Tuesday, September 12th, 2011

1) No solutions
2) Ignore! Prof. Grunbaum mentioned there will be no $L U$ factorizations on the exam!
3) (a) Undefined
(b) $\left[\begin{array}{lll}1 & 0 & 2 \\ 3 & 0 & 4\end{array}\right]$
4)

$$
A^{-1}=\left[\begin{array}{ccc}
-\frac{1}{2} & -\frac{3}{2} & \frac{3}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right]
$$

5) No (columns are linearly dependent)
6)

$$
A=\left[\begin{array}{ccc}
2 & 3 & 5 \\
1 & -1 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

7)

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

8) (a) Basis for $\operatorname{Nul(A)}$:

$$
\left\{\left[\begin{array}{c}
-3 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{5}{2} \\
-\frac{3}{2} \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

$\underline{\text { Basis for } \operatorname{Col}(A):}$

$$
\left\{\left[\begin{array}{c}
3 \\
-2 \\
-5 \\
-2
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
9 \\
6
\end{array}\right],\left[\begin{array}{l}
3 \\
7 \\
3 \\
3
\end{array}\right]\right\}
$$

(b) No (because $\operatorname{Nul}(A) \neq\{\mathbf{0}\}$), No (because $\operatorname{Col}(A)$ is 3-dimensional)
9) (a) $\mathbf{F A L S E}\left(A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\right)$
(b) TRUE (by definition of onto)
(c) $\operatorname{FALSE}\left(A=\left[\begin{array}{ll}1 & 0\end{array}\right], B=\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$
(d) $\operatorname{FALSE}\left(A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right)$
(e) TRUE (A is invertible)
(f) $\mathbf{T R U E}(A \mathbf{x}=\mathbf{0}$ has only the trivial solution)
(g) TRUE $\left(2 \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}=\mathbf{0}\right)$
(h) TRUE $\left(a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+c \mathbf{v}_{\mathbf{3}}+0 \mathbf{v}_{\mathbf{4}}=\mathbf{0}\right.$, where a, b, c are not all 0$)$

